Reference
TulipaClustering.AuxiliaryClusteringData
TulipaClustering.ClusteringResult
TulipaClustering.DataValidationException
TulipaClustering.append_period_from_source_df_as_rp!
TulipaClustering.cluster!
TulipaClustering.combine_periods!
TulipaClustering.df_to_matrix_and_keys
TulipaClustering.dummy_cluster!
TulipaClustering.find_auxiliary_data
TulipaClustering.find_period_weights
TulipaClustering.find_representative_periods
TulipaClustering.fit_rep_period_weights!
TulipaClustering.fit_rep_period_weights!
TulipaClustering.greedy_convex_hull
TulipaClustering.matrix_and_keys_to_df
TulipaClustering.project_onto_nonnegative_orthant
TulipaClustering.project_onto_simplex
TulipaClustering.project_onto_standard_basis
TulipaClustering.projected_subgradient_descent!
TulipaClustering.split_into_periods!
TulipaClustering.transform_wide_to_long!
TulipaClustering.validate_data!
TulipaClustering.validate_df_and_find_key_columns
TulipaClustering.weight_matrix_to_df
TulipaClustering.write_clustering_result_to_tables
TulipaClustering.AuxiliaryClusteringData
— TypeStructure to hold the time series used in clustering together with some summary statistics on the data.
TulipaClustering.ClusteringResult
— TypeStructure to hold the clustering result.
TulipaClustering.DataValidationException
— TypeDataValidationException
Exception related to data validation of the Tulipa Energy Model input data.
TulipaClustering.append_period_from_source_df_as_rp!
— Methodappend_period_from_source_df_as_rp!(df; source_df, period, rp, key_columns)
Extracts a period with index period
from source_df
and appends it as a representative period with index rp
to df
, using key_columns
as keys.
Examples
julia> source_df = DataFrame([:period => [1, 1, 2, 2], :timestep => [1, 2, 1, 2], :a .=> "b", :value => 5:8])
4×4 DataFrame
Row │ period timestep a value
│ Int64 Int64 String Int64
─────┼──────────────────────────────────
1 │ 1 1 b 5
2 │ 1 2 b 6
3 │ 2 1 b 7
4 │ 2 2 b 8
julia> df = DataFrame([:rep_period => [1, 1, 2, 2], :timestep => [1, 2, 1, 2], :a .=> "a", :value => 1:4])
4×4 DataFrame
Row │ rep_period timestep a value
│ Int64 Int64 String Int64
─────┼──────────────────────────────────────
1 │ 1 1 a 1
2 │ 1 2 a 2
3 │ 2 1 a 3
4 │ 2 2 a 4
julia> TulipaClustering.append_period_from_source_df_as_rp!(df; source_df, period = 2, rp = 3, key_columns = [:timestep, :a])
6×4 DataFrame
Row │ rep_period timestep a value
│ Int64 Int64 String Int64
─────┼──────────────────────────────────────
1 │ 1 1 a 1
2 │ 1 2 a 2
3 │ 2 1 a 3
4 │ 2 2 a 4
5 │ 3 1 b 7
6 │ 3 2 b 8
TulipaClustering.cluster!
— Methodcluster!(
connection,
period_duration,
num_rps;
input_database_schema = "",
input_profile_table_name = "profiles",
database_schema = "",
drop_incomplete_last_period::Bool = false,
method::Symbol = :k_means,
distance::SemiMetric = SqEuclidean(),
initial_representatives::AbstractDataFrame = DataFrame(),
weight_type::Symbol = :convex,
tol::Float64 = 1e-2,
clustering_kwargs = Dict(),
weight_fitting_kwargs = Dict(),
niters::Int = 100,
learning_rate::Float64 = 0.001,
adaptive_grad::Bool = false,
)
Convenience function to cluster the table named in input_profile_table_name
using period_duration
and num_rps
. The resulting tables profiles_rep_periods
, rep_periods_mapping
, and rep_periods_data
are loaded into connection
in the database_schema
, if given, and enriched with year
information.
This function extract the table, then calls split_into_periods!
, find_representative_periods
, fit_rep_period_weights!
, and finally write_clustering_result_to_tables
.
Arguments
Required
connection
: DuckDB connectionperiod_duration
: Duration of each period, i.e., number oftimestep
s.num_rps
: Number of findrepresentativeperiods
Keyword arguments
input_database_schema
(default""
): Schema of the input tablesinput_profile_table_name
(default"profiles"
): Default name of theprofiles
table inside the above schemaadatabase_schema
(default""
): Schema of the output tablesdrop_incomplete_last_period
(defaultfalse
): controls how the last period is treated if it is not complete: if this parameter is set totrue
, the incomplete period is dropped and the weights are rescaled accordingly; otherwise, clustering is done forn_rp - 1
periods, and the last period is added as a special shorter representative periodmethod
(default:k_means
): clustering method to use, either
:kmeansand
:kmedoids`distance
(defaultDistances.SqEuclidean()
): semimetric used to measure distance between data points.initial_representatives
initial representatives that should be included in the clustering. The period column in the initial representatives should be 1-indexed and the key columns should be the same as in the clustering data. For the hull methods it will be added before clustering, for :kmeans and :kmedoids it will be added after clustering.weight_type
(default:convex
): the type of weights to find; possible values are::convex
: each period is represented as a convex sum of the representative periods (a sum with nonnegative weights adding into one):conical
: each period is represented as a conical sum of the representative periods (a sum with nonnegative weights):conical_bounded
: each period is represented as a conical sum of the representative periods (a sum with nonnegative weights) with the total weight bounded from above by one.
tol
(default1e-2
): algorithm's tolerance; when the weights are adjusted by a value less then or equal totol
, they stop being fitted further.clustering_kwargs
(defaultDict()
): Extra keyword arguments passed tofind_representative_periods
weight_fitting_kwargs
(defaultDict()
): Extra keyword arguments passed tofit_rep_period_weights!
TulipaClustering.combine_periods!
— Methodcombine_periods!(df)
Modifies a dataframe df
by combining the columns timestep
and period
into a single column timestep
of global time steps. The period duration is inferred automatically from the maximum time step value, assuming that periods start with time step 1.
Examples
julia> df = DataFrame([:period => [1, 1, 2], :timestep => [1, 2, 1], :value => 1:3])
3×3 DataFrame
Row │ period timestep value
│ Int64 Int64 Int64
─────┼──────────────────────────
1 │ 1 1 1
2 │ 1 2 2
3 │ 2 1 3
julia> TulipaClustering.combine_periods!(df)
3×2 DataFrame
Row │ timestep value
│ Int64 Int64
─────┼──────────────────
1 │ 1 1
2 │ 2 2
3 │ 3 3
TulipaClustering.df_to_matrix_and_keys
— Methoddf_to_matrix_and_keys(df, key_columns)
Converts a dataframe df
(in a long format) to a matrix, ignoring the columns specified as key_columns
. The key columns are converted from long to wide format and returned alongside the matrix.
Examples
julia> df = DataFrame([:period => [1, 1, 2, 2], :timestep => [1, 2, 1, 2], :a .=> "a", :value => 1:4])
4×4 DataFrame
Row │ period timestep a value
│ Int64 Int64 String Int64
─────┼──────────────────────────────────
1 │ 1 1 a 1
2 │ 1 2 a 2
3 │ 2 1 a 3
4 │ 2 2 a 4
julia> m, k = TulipaClustering.df_to_matrix_and_keys(df, [:timestep, :a]); m
2×2 Matrix{Float64}:
1.0 3.0
2.0 4.0
julia> k
2×2 DataFrame
Row │ timestep a
│ Int64 String
─────┼───────────────────
1 │ 1 a
2 │ 2 a
TulipaClustering.dummy_cluster!
— Methoddummy_cluster!(connection)
Convenience function to create the necessary columns and tables when clustering is not required.
This is essentially creating a single representative period with the size of the whole profile. See cluster!
for more details of what is created.
TulipaClustering.find_auxiliary_data
— Methodfind_auxiliary_data(clustering_data)
Calculates auxiliary data associated with the clustering_data
. These include:
key_columns_demand
: key columns in the demand dataframekey_columns_generation_availability
: key columns in the generation availability dataframeperiod_duration
: duration of time periods (in time steps)last_period_duration
: duration of the last periodn_periods
: total number of periods
TulipaClustering.find_period_weights
— Methodfind_period_weights(period_duration, last_period_duration, n_periods, drop_incomplete_periods)
Finds weights of two different types of periods in the clustering data:
- complete periods: these are all of the periods with length equal to
period_duration
. - incomplete last period: if last period duration is less than
period_duration
, it is incomplete.
TulipaClustering.find_representative_periods
— Methodfindrepresentativeperiods( clusteringdata; nrp = 10, rescaledemanddata = true, dropincompletelastperiod = false, method = :kmeans, distance = SqEuclidean(), initial_representatives = DataFrame(), args..., )
Finds representative periods via data clustering.
clustering_data
: the data to perform clustering on.n_rp
: number of representative periods to find.rescale_demand_data
: iftrue
, demands are first divided by the maximum demand value, so that they are between zero and one like the generation availability datadrop_incomplete_last_period
: controls how the last period is treated if it is not complete: if this parameter is set totrue
, the incomplete period is dropped and the weights are rescaled accordingly; otherwise, clustering is done forn_rp - 1
periods, and the last period is added as a special shorter representative periodmethod
: clustering method to use, either:k_means
and:k_medoids
distance
: semimetric used to measure distance between data points.initial_representatives
initial representatives that should be included in the clustering. The period column in the initial representatives should be 1-indexed and the key columns should be the same as in the clustering data. For the hull methods it will be added before clustering, for :kmeans and :kmedoids it will be added after clustering.- other named arguments can be provided; they are passed to the clustering method.
TulipaClustering.fit_rep_period_weights!
— Methodfitrepperiodweights!(weightmatrix, clusteringmatrix, rpmatrix; weight_type, tol, args...)
Given the initial weight guesses, finds better weights for convex or conical combinations of representative periods. For conical weights, it is possible to bound the total weight by one.
The arguments:
clustering_result
: the result of runningTulipaClustering.find_representative_periods
weight_type
: the type of weights to find; possible values are::convex
: each period is represented as a convex sum of the representative periods (a sum with nonnegative weights adding into one):conical
: each period is represented as a conical sum of the representative periods (a sum with nonnegative weights):conical_bounded
: each period is represented as a conical sum of the representative periods (a sum with nonnegative weights) with the total weight bounded from above by one.
tol
: algorithm's tolerance; when the weights are adjusted by a value less then or equal totol
, they stop being fitted further.- other arguments control the projected subgradient method; they are passed through to
TulipaClustering.projected_subgradient_descent!
.
TulipaClustering.fit_rep_period_weights!
— Methodfitrepperiodweights!(weightmatrix, clusteringmatrix, rpmatrix; weight_type, tol, args...)
Given the initial weight guesses, finds better weights for convex or conical combinations of representative periods. For conical weights, it is possible to bound the total weight by one.
The arguments:
weight_matrix
: the initial guess for weights; the weights are adjusted using a projected subgradient descent methodclustering_matrix
: the matrix of raw clustering datarp_matrix
: the matrix of raw representative period dataweight_type
: the type of weights to find; possible values are::convex
: each period is represented as a convex sum of the representative periods (a sum with nonnegative weights adding into one):conical
: each period is represented as a conical sum of the representative periods (a sum with nonnegative weights):conical_bounded
: each period is represented as a conical sum of the representative periods (a sum with nonnegative weights) with the total weight bounded from above by one.
tol
: algorithm's tolerance; when the weights are adjusted by a value less then or equal totol
, they stop being fitted further.show_progress
: iftrue
, a progress bar will be displayed.- other arguments control the projected subgradient method; they are passed through to
TulipaClustering.projected_subgradient_descent!
.
TulipaClustering.greedy_convex_hull
— Methodgreedy_convex_hull(matrix; n_points, distance, initial_indices, mean_vector)
Greedy method for finding n_points
points in a hull of the dataset. The points are added iteratively, at each step the point that is the furthest away from the hull of the current set of points is found and added to the hull.
matrix
: the clustering matrixn_points
: number of hull points to finddistance
: distance semimetricinitial_indices
: initial points which must be added to the hull, can be nothingmean_vector
: when adding the first point (ifinitial_indices
is not given), it will be chosen as the point furthest away from themean_vector
; this can be nothing, in which case the first step will add a point furtherst away from the centroid (the mean) of the dataset
TulipaClustering.matrix_and_keys_to_df
— Methodmatrix_and_keys_to_df(matrix, keys)
Converts a a matrix matrix
to a dataframe, appending the key columns given by keys
.
Examples
julia> m = [1.0 3.0; 2.0 4.0]
2×2 Matrix{Float64}:
1.0 3.0
2.0 4.0
julia> k = DataFrame([:timestep => 1:2, :a .=> "a"])
2×2 DataFrame
Row │ timestep a
│ Int64 String
─────┼───────────────────
1 │ 1 a
2 │ 2 a
julia> TulipaClustering.matrix_and_keys_to_df(m, k)
4×4 DataFrame
Row │ rep_period timestep a value
│ Int64 Int64 String Float64
─────┼────────────────────────────────────────
1 │ 1 1 a 1.0
2 │ 1 2 a 2.0
3 │ 2 1 a 3.0
4 │ 2 2 a 4.0
TulipaClustering.project_onto_nonnegative_orthant
— Methodprojectontononnegative_orthant(vector)
Projects vector
onto the nonnegative orthant. This projection is trivial: replace negative components of the vector with zeros.
TulipaClustering.project_onto_simplex
— Methodprojectontosimplex(vector)
Projects vector
onto a unit simplex using Michelot's algorithm in Condat's accelerated implementation (2017). See Figure 2 of Condat, L. Fast projection onto the simplex and the ball. Math. Program. 158, 575–585 (2016).. For the details on the meanings of v, ṽ, ρ and other variables, see the original paper.
TulipaClustering.project_onto_standard_basis
— Methodprojectontostandard_basis(vector)
Projects vector
onto the standard basis. This projection is trivial: replace all components of the vector with zeros, except for the largest one, which is replaced with one.
TulipaClustering.projected_subgradient_descent!
— Methodprojectedsubgradientdescent!(x; gradient, projection, niters, rtol, learningrate, adaptivegrad)
Fits x
using the projected gradient descent scheme.
The arguments:
x
: the value to fitsubgradient
: the subgradient operator, that is, a function that takes vectors of the same shape asx
as inputs and returns a subgradient of the loss at that point; the fitting is done to minimize the corresponding implicit lossprojection
: the projection operator, that is, a function that, given a vectorx
, finds a point within some subspace that is closest tox
niters
: maximum number of projected gradient descent iterationstol
: tolerance; when no components ofx
improve by more thantol
, the algorithm stopslearning_rate
: learning rate of the algorithmadaptive_grad
: if true, the learning rate is adjusted using the adaptive gradient method, see John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 12, null (2/1/2011), 2121–2159.
TulipaClustering.split_into_periods!
— Methodsplit_into_periods!(df; period_duration=nothing)
Modifies a dataframe df
by separating the column timestep
into periods of length period_duration
. The new data is written into two columns:
period
: the period ID;timestep
: the time step within the current period.
If period_duration
is nothing
, then all of the time steps are within the same period with index 1.
Examples
julia> df = DataFrame([:timestep => 1:4, :value => 5:8])
4×2 DataFrame
Row │ timestep value
│ Int64 Int64
─────┼──────────────────
1 │ 1 5
2 │ 2 6
3 │ 3 7
4 │ 4 8
julia> TulipaClustering.split_into_periods!(df; period_duration=2)
4×3 DataFrame
Row │ period timestep value
│ Int64 Int64 Int64
─────┼──────────────────────────
1 │ 1 1 5
2 │ 1 2 6
3 │ 2 1 7
4 │ 2 2 8
julia> df = DataFrame([:period => [1, 1, 2], :timestep => [1, 2, 1], :value => 1:3])
3×3 DataFrame
Row │ period timestep value
│ Int64 Int64 Int64
─────┼──────────────────────────
1 │ 1 1 1
2 │ 1 2 2
3 │ 2 1 3
julia> TulipaClustering.split_into_periods!(df; period_duration=1)
3×3 DataFrame
Row │ period timestep value
│ Int64 Int64 Int64
─────┼──────────────────────────
1 │ 1 1 1
2 │ 2 1 2
3 │ 3 1 3
julia> TulipaClustering.split_into_periods!(df)
3×3 DataFrame
Row │ period timestep value
│ Int64 Int64 Int64
─────┼──────────────────────────
1 │ 1 1 1
2 │ 1 2 2
3 │ 1 3 3
TulipaClustering.transform_wide_to_long!
— Methodtransform_wide_to_long!(
connection,
wide_table_name,
long_table_name;
)
Convenience function to convert a table in wide format to long format using DuckDB. Originally aimed at converting a profile table like the following:
| year | timestep | name1 | name2 | ⋯ | name2 | | –– | –––– | ––- | ––- | – | ––- | | 2030 | 1 | 1.0 | 2.5 | ⋯ | 0.0 | | 2030 | 2 | 1.5 | 2.6 | ⋯ | 0.0 | | 2030 | 3 | 2.0 | 2.6 | ⋯ | 0.0 |
To a table like the following:
year | timestep | profile_name | value |
---|---|---|---|
2030 | 1 | name1 | 1.0 |
2030 | 2 | name1 | 1.5 |
2030 | 3 | name1 | 2.0 |
2030 | 1 | name2 | 2.5 |
2030 | 2 | name2 | 2.6 |
2030 | 3 | name2 | 2.6 |
⋮ | ⋮ | ⋮ | ⋮ |
2030 | 1 | name3 | 0.0 |
2030 | 2 | name3 | 0.0 |
2030 | 3 | name3 | 0.0 |
This conversion is done using the UNPIVOT
SQL command from DuckDB.
Keyword arguments
exclude_columns = ["year", "timestep"]
: Which tables to exclude from the conversionname_column = "profile_name"
: Name of the new column that contains the names of the old columnsvalue_column = "value"
: Name of the new column that holds the values from the old columns
TulipaClustering.validate_data!
— Methodvalidate_data!(connection)
Validate that the required data in connection
exists and is correct. Throws a DataValidationException
if any error is found.
TulipaClustering.validate_df_and_find_key_columns
— Methodvalidate_df_and_find_key_columns(df)
Checks that dataframe df
contains the necessary columns and returns a list of columns that act as keys (i.e., unique data identifiers within different periods).
Examples
julia> df = DataFrame([:period => [1, 1, 2], :timestep => [1, 2, 1], :a .=> "a", :value => 1:3])
3×4 DataFrame
Row │ period timestep a value
│ Int64 Int64 String Int64
─────┼──────────────────────────────────
1 │ 1 1 a 1
2 │ 1 2 a 2
3 │ 2 1 a 3
julia> TulipaClustering.validate_df_and_find_key_columns(df)
2-element Vector{Symbol}:
:timestep
:a
julia> df = DataFrame([:value => 1])
1×1 DataFrame
Row │ value
│ Int64
─────┼───────
1 │ 1
julia> TulipaClustering.validate_df_and_find_key_columns(df)
ERROR: DomainError with 1×1 DataFrame
Row │ value
│ Int64
─────┼───────
1 │ 1:
DataFrame must contain columns `timestep` and `value`
TulipaClustering.weight_matrix_to_df
— Methodweight_matrix_to_df(weights)
Converts a weight matrix from a (sparse) matrix, which is more convenient for internal computations, to a dataframe, which is better for saving into a file. Zero weights are dropped to avoid cluttering the dataframe.
TulipaClustering.write_clustering_result_to_tables
— Methodwrite_clustering_result_to_table(connection, clustering_result)
Writes a TulipaClustering.ClusteringResult
to CSV files in the output_folder
.