Tutorial

Explanation

To simplify, let's consider a single profile, for a single year. Let's denote it as $p_i$, where $i = 1,\dots,N$. The clustering process consists of:

  1. Split N into (let's assume equal) periods of size m = period_duration. We can rename $p_i$ as

    \[p_{j,k}, \qquad \text{where} \qquad j = 1,\dots,m, \quad k = 1,\dots,N/m.\]

  2. Compute num_rps representative periods

    \[r_{j,\ell}, \qquad \text{where} \qquad j = 1,\dots,m, \qquad \ell = 1,\dots,\text{num\_rps}.\]

  3. During computation of the representative periods, we obtained weight $w_{k,\ell}$ between the period $k$ and the representative period $\ell$, such that

    \[p_{j,k} = \sum_{\ell = 1}^{\text{num\_rps}} r_{j,\ell} \ w_{k,\ell}, \qquad \forall j = 1,\dots,m, \quad k = 1,\dots,N/m\]

High level API/DuckDB API

High level API

This tutorial focuses on the highest level of the API, which requires the use of a DuckDB connection.

The high-level API of TulipaClustering focuses on using TulipaClustering as part of the Tulipa workflow. This API consists of three main functions: transform_wide_to_long!, cluster!, and dummy_cluster!. In this tutorial we'll use all three.

Normally, you will have the DuckDB connection from the larger Tulipa workflow, so here we will create a temporary connection with fake data to show an example of the workflow. You can look into the source code of this documentation to see how to create this fake data.

Here is the content of that connection:

using DataFrames, DuckDB

nice_query(str) = DataFrame(DuckDB.query(connection, str))
nice_query("show tables")
1×1 DataFrame
Rowname
String
1profiles_wide

And here is the first rows of profiles_wide:

nice_query("from profiles_wide limit 10")
10×5 DataFrame
Rowyeartimestepavailsolardemand
Int32Int64Float64Float64Float64
1203014.385420.03.67834
2203024.347730.03.85292
3203034.063630.04.2078
4203043.893820.04.57114
5203053.826540.05.16514
6203063.839290.05.70157
7203073.799590.2022636.38049
8203084.026880.5809787.06218
9203094.098660.9641896.70047
102030104.228811.155447.05542

And finally, this is the plot of the data:

using Plots

table = DuckDB.query(connection, "from profiles_wide")
plot(size=(800, 400))
timestep = [row.timestep for row in table]
for profile_name in (:avail, :solar, :demand)
    value = [row[profile_name] for row in table]
    plot!(timestep, value, lab=string(profile_name))
end
plot!()
Example block output

Transform a wide profiles table into a long table

Required

The long table format is a requirement of TulipaClustering, even for the dummy clustering example.

In this context, a wide table is a table where each new profile occupies a new column. A long table is a table where the profile names are stacked in a column with the corresponding values in a separate column. Given the name of the source table (in this case, profiles_wide), we can create a long table with the following call:

using TulipaClustering

transform_wide_to_long!(connection, "profiles_wide", "profiles")

nice_query("FROM profiles LIMIT 10")
10×4 DataFrame
Rowyeartimestepprofile_namevalue
Int32Int64StringFloat64
120301avail4.38542
220302avail4.34773
320303avail4.06363
420304avail3.89382
520305avail3.82654
620306avail3.83929
720307avail3.79959
820308avail4.02688
920309avail4.09866
10203010avail4.22881

Here, we decided to save the long profiles table with the name profiles to use in the clustering below.

Dummy Clustering

A dummy cluster will essentially ignore the clustering and create the necessary tables for the next steps in the Tulipa workflow.

for table_name in (
    "rep_periods_data",
    "rep_periods_mapping",
    "profiles_rep_periods",
    "timeframe_data",
)
    DuckDB.query(connection, "DROP TABLE IF EXISTS $table_name")
end

clusters = dummy_cluster!(connection)

nice_query("FROM rep_periods_data LIMIT 5")
1×4 DataFrame
Rowyearrep_periodnum_timestepsresolution
Int32Int64Int64Float64
1203016721.0
nice_query("FROM rep_periods_mapping LIMIT 5")
1×4 DataFrame
Rowyearperiodrep_periodweight
Int32Int64Int64Float64
12030111.0
nice_query("FROM profiles_rep_periods LIMIT 5")
5×5 DataFrame
Rowrep_periodtimestepyearprofile_namevalue
Int64Int64Int32StringFloat64
1112030avail4.38542
2122030avail4.34773
3132030avail4.06363
4142030avail3.89382
5152030avail3.82654
nice_query("FROM timeframe_data LIMIT 5")
1×3 DataFrame
Rowyearperiodnum_timesteps
Int32Int64Int64
120301672

Clustering

We can perform a real clustering by using the cluster! function with two extra arguments (see Explanation for their deeped meaning):

  • period_duration: How long are the split periods;
  • num_rps: How many representative periods.
period_duration = 24
num_rps = 3

for table_name in (
    "rep_periods_data",
    "rep_periods_mapping",
    "profiles_rep_periods",
    "timeframe_data",
)
    DuckDB.query(connection, "DROP TABLE IF EXISTS $table_name")
end

clusters = cluster!(connection, period_duration, num_rps)

nice_query("FROM rep_periods_data LIMIT 5")
3×4 DataFrame
Rowyearrep_periodnum_timestepsresolution
Int32Int64Int64Float64
120301241.0
220302241.0
320303241.0
nice_query("FROM rep_periods_mapping LIMIT 5")
5×4 DataFrame
Rowyearperiodrep_periodweight
Int32Int64Int64Float64
12030111.0
22030210.699373
32030220.254527
42030230.0461005
52030310.0509929
nice_query("FROM profiles_rep_periods LIMIT 5")
5×5 DataFrame
Rowrep_periodtimestepyearprofile_namevalue
Int64Int64Int32StringFloat64
1112030avail4.36321
2122030avail4.28142
3132030avail4.07577
4142030avail3.96073
5152030avail3.82606
nice_query("FROM timeframe_data LIMIT 5")
5×3 DataFrame
Rowyearperiodnum_timesteps
Int32Int64Int64
12030124
22030224
32030324
42030424
52030524